Generating Function Identities for ζ(2n+2), ζ(2n+3) via the WZ Method

نویسندگان

  • Khodabakhsh Hessami Pilehrood
  • Tatiana Hessami Pilehrood
چکیده

Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and BaileyBorwein-Bradley’s identities for generating functions of the sequences {ζ(2n+2)}n≥0 and {ζ(2n + 3)}n≥0. By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Determination of Apéry-like Identities for ς(2n + 2)

We document the discovery of two generating functions for ζ(2n + 2), analogous to earlier work for ζ(2n + 1) and ζ(4n + 3), initiated by Koecher and pursued further by Borwein, Bradley and others.

متن کامل

6 Experimental Determination of Apéry - Like Identities for ζ ( 2 n + 2 )

We document the discovery of two generating functions for ζ(2n + 2), analogous to earlier work for ζ(2n + 1) and ζ(4n + 3), initiated by Koecher and pursued further by Borwein, Bradley and others.

متن کامل

Simultaneous Generation for Zeta Values by the Markov-WZ Method

By application of the Markov-WZ method, we prove a more general form of a bivariate generating function identity containing, as particular cases, Koecher’s and Almkvist-Granville’s Apéry-like formulae for odd zeta values. As a consequence, we get a new identity producing Apéry-like series for all ζ(2n+ 4m+ 3), n,m ≥ 0, convergent at the geometric rate with ratio 2−10.

متن کامل

Series acceleration formulae for beta values

We prove generating function identities producing fast convergent series for the sequences β(2n + 1), β(2n + 2) and β(2n+3), where β is Dirichlet's beta function. In particular, we obtain a new accelerated series for Catalan's constant convergent at a geometric rate with ratio 2 −10 , which can be considered as an analog of Amdeberhan-Zeilberger's series for ζ(3).

متن کامل

An exotic shuffle relation for multiple zeta values

In this short note we will provide a new proof of the following exotic shuffle relation of multiple zeta values: ζ({2}x{3, 1}) = ( 2n+m m ) π (2n+ 1) · (4n+ 2m+ 1)! . This was proved by Zagier when n = 0, by Broadhurst when m = 0, and by Borwein, Bradley, and Broadhurst when m = 1. In general this was proved by Bowman and Bradley. Our new idea is to use the method of Borwein et al. to reduce th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008